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ABSTRACT 

We apply numerical simulation based on fundamental physical properties to the study of the development of electroosmotic 
flow and thermal gradient formation that occur immediately after a potential is applied to a capillary tilled with electrolyte. 
Electroosmotic flow requires a few hundred microseconds to develop. We confirm others’ tindings that radial thermal gradients 
are generally too smah to dominate zone dispersion for capillaries with lumen diameters smaller than about 100 pm. The radial 
thermal gradient within the capillary hunen requires a few milliseconds to develop, but the general, whole-capillary temperature 
rise requires ten to a thousand times longer. We combine on one scale the major timedependent processes that occur when an 
axial potential gradient is applied, and we demonstrate the theoretical feasibility of using modulated driving potentials to suppress 
thermal zone broadening. 

INTRODUCTION 

Much current interest in theory and practice of 
capillary electrophoresis (CE) is driven quite 
properly by the technique’s very high efficiency. 
Experiments generally develop over 100 theoret- 
ical plates per second, as expected from steady- 
state theory. However, transient processes in CE 
resulting from altering the applied potential. are 
not nearly as well understood. When this poten- 
tial is first applied at the beginning of a CE 
separation, several changes occur in the capillary 
including propagation of the electric field down 
the length of the column, capacitative charging 
of the double layer at the silica-electrolyte inter- 
face, resistive heating of the electrolyte and 
subsequent development of thermal gradients in 
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the electrolyte and silica, and the start of electro- 
osmotic flow, if any. Also, in real instruments 
the power supply and electrolyte together consti- 
tute a low-pass electric tilter so that the potential 
gradient in the capillary lumen requires some 
time to rise to the steady-state gradient mag- 
nitude . 

Each of these processes has a characteristic 
timescale, and these timescales cover a range of 
roughly ten orders of magnitude. However, 
when two or more of these processes have 
similar timescales, the processes probably inter- 
act. The effect of a given process on separation 
efficiency is probably most complex when its 
timescale is on the same order as the characteris- 
tic time for an analyte molecule to diffuse 
through the zone either radially (through the 
distance from the capillary center to the lumen 
wall or vice versa) or axially (from one end of an 
analyte zone to the other). 

We examine below the progress of two major 
transient processes that occur immediately after 
a potential is applied to a capillary filled with 
electrolyte. First, we show that electroosmotic 
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flow does not develop immediately after poten- 
tial is applied but that it requires a few hundred 
microseconds to develop. Second, we use nu- 
merical simulation based directly on very fun- 
damental physical assumptions to co&m others’ 
findings [l-3] that radial thermal gradients are 
generally too small to dominate zone dispersion 
for capillaries with lumen diameters smaller than 
about 100 pm. Finally, we combine on one scale 
the relative rates of several transient processes in 
CE and comment on the feasibility of using 
modulated driving potentials to suppress thermal 
zone broadening. In the interests of clarity we 
present our methods and results for each process 
before proceeding to the next. 

NUMERICAL SIMULATION OF ELECTROOSMOTIC 

FLOW CHANGES 

MethodF 
This simulation is based on the integration of 

simple differential equations in one spatial (ra- 
dial) dimension. The boundary conditions in the 
radial dimension simply consist of the initial 
electrolyte velocity (V) at all radii (r) in the 
lumen, or V(t = 0; r). Boundary conditions in the 
time dimension consist of time history of the 
axial flow velocity just inside the aqueous-silica 
surface at the wall of the lumen, or V(t; r = raq), 
which is the same as the equilibrium flow rate 
across the lumen. In fact, we divide the lumen 
space into iV_, concentric annuli each of thick- 
ness Ar, so that the boundary conditions are 
specified as V(t = 0; i) and V(t; Naq + 1). 

We based the electroosmotic simulations on 
some simplifying assumptions. We include no 
temperature dependence of the electrolyte vis- 
cosity because, as we show below, the timescale 
of relaxation of the electrolyte velocity is much 
shorter than heating timescales at the lumen wall 
so that the viscosity is nearly constant over the 
time required to reestablish velocity steady state. 
Thus, while electrolyte heating certainly does 
alter electroosmotic flow rates [4-71, that process 
is slower than the one investigated here. Further, 
we assume that the slipping zone at the wall, that 
is the very thin boundary layer of electrolyte 
solution where the electrolyte velocity increases 
from zero at the silica wall itself to the asymp- 

totic electroosmotic velocity, is very small com- 
pared to the lumen diameter. This assumption is 
supported by the very small depth, on the order 
of 10 nm, that one calculates for the double layer 
in concentrated electrolytes [&lo]. Though 
there exist reports that the double layers may 
effectively be as thick as 1 or 2 pm [ll], even 
this would directly affect only the very outermost 
annuli in our model, and the timescale indicated 
by the model would probably not be affected 
significantly. 

Integration resolution Ar in the radial dimen- 
sion was chosen to be 0.251.0% of the lumen 
(inside) diameter for electroosmotic simulations. 
The propagation of axial velocities was assumed 
to arise by simple_ diffusion through the action of 
viscous forces Fi per unit length transmitted 
through interannulus interfaces i (which lie be- 
tween annuli i and i + 1) as 

6 = 2ri7)(l$+l -V;:) (1) 

which depends on axial velocities V;. and Vi+l in 
adjacent annuli i and i + 1. These forces cause 
accelerations Vi in annulus i 

for i = 1 , 

where Mi is the mass of electrolyte in annulus i. 
Integrating $ in each annulus from its initial 
velocity V(t = 0; i) gives the history of its velocity 
I$ 

The integration time increment At,,,,_ depends 
on Ar and was computed as one-half the maxi- 
mum time during which, given each annulus’s 
calculated accelerations integrated forward 
linearly in time, no annulus’s velocity may ex- 
trapolate past the mean velocity of its two 
adjacent rings. To calculate this, consider a 
radial velocity discontinuity between two annuli, 
calculate the viscous force in the interface be- 
tween them, calculate the initial acceleration of 
the electrolyte in one of the two annuli, double 
the acceleration to account for the possibility of 
an equally large velocity discontinuity on the 
other side of the annulus, compute the time for 
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the electrolyte in this annulus to accelerate by 
half the initial velocity difference in the dis- 
continuity and halve the time for safety. By this 
method, the maximum time increment is 

W*d 
At,,, = - 

fh 

where d is the electrolyte density and 11 is the 
electrolyte viscosity. Note that At,,,_ is time- 
independent and need be computed only once 
before integration begins. Were the integration 
time increment to exceed At_, oscillation and 
simulation instability would rapidly result. Re- 
stricting the time increment to less than At,,, 
always prevented this oscillatory instability in 
our work. 

Results and discussion 
When the electrolyte velocity at the capillary 

wall suddenly changes because of the application 
of electrical potential down the capillary axis, 
viscous forces accelerate the bulk of the elec- 
trolyte until the electrolyte all moves in plug flow 
at the same velocity as the electrolyte at the wall, 
as expected. This radial propagation occurs at a 
rate proportional to the electrolyte solution’s 
kinematic viscosity, or its intrinsic viscosity di- 
vided by its density. By taking advantage of the 
analogy between wall-driven electroosmotic flow 
propagation and well-thermostatted heat trans- 
fer, we calculate a characteristic relaxation time 
for this process as 

(4) 

v/v, 
1 

0.5 
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Fig. 1. Axial electrolyte velocity profiles at 20, 40, 60,. . . , 
180, 24M (bold curve), 300, 400, and 500 ps after potential 
applied. 

Except for instruments designed specifically to 
induce high-frequency, high-voltage potential 
changes in the capillary, most CE instruments 
will have rise times considerably longer than 1 
ms [13]. The present analysis concludes that for 
these usual instruments, electroosmotic flow ef- 
fectively propagates instantaneously across the 
capillary lumen, and electroosmotic flow delays 
generally need not be taken into consideration. 
This process appears to be faster than all thermal 
and all other transient mechanical processes in 
CE. This is especially true for capillaries with 
very small inside diameters [14,15]. 

Even for an instrument with zero potential 
gradient rise time, the zone broadening effects of 
electroosmotic relaxation are small. Because 
analyte molecular diffusion is much slower than 
effective velocity-propagation diffusion (whose 
effective diffusion coefficient is equal to the 

where (or is the first root of the Bessel equation 
J&r) = 0, about 2.4048 [12]. For a capillary of 
inside diameter 50 micrometers filled with an 
electrolyte similar to water at room temperature 
is about 110 ps. From our simulation results 
given in Fig. 1 it is clear that the electroosmotic 
flow has in fact regained its radial uniformity by 
200 to 300 ms after potential is initially applied. 
Eqn. 4 also predicts that the electroosmotic 
relaxation time is proportional to the square of 
the capillary inside diameter, and simulation 
results like those in Fig. 2 are consistent with this 
expectation. 

0.0 1.0 2.0 

-*P--eo-==mw 

Fig. 2. Axial electrolyte velocity profiles at the lumen center. 
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kinematic viscosity, about 10e2 cm2/s for water), 
electroosmotic relaxation will have its full effect 
on the analyte’s radial concentration profile 
before diffusion can significantly blur it. 

The zone broadening effect of electroosmotic 
relaxation during a cycle where the potential is 
applied and withdrawn could therefore be mea- 
sured in principle by moving an analyte zone 
past the detector and measuring the zone’s 
breadth (variance), applying one or more axial 
potential changes each separated from the next 
by enough time to allow radial diffusional mix- 
ing, and then moving the zone back across the 
detector to measure the peak variance increase. 
Performing this experiment by numerical simula- 
tion on a column of inside diameter 50 pm, one 
measures the axial zone variance introduced for 
one voltage-switching cycle as about 0.4 V,, 
micrometers2, where V,, is the electrolyte ve- 
locity at the wall in cm/s. We also find that this 
axial variance induced by electroosmotic relaxa- 
tion is proportional to the fourth power of the 
capillary inside diameter. Voltage-switching var- 
iance contributions calculated in this way are five 
orders of magnitude smaller than upper limits 
previously deduced by experiment [16], suggest- 
ing either that some addition source of voltage- 
switching dispersion exists or that determination 
of dispersion by subtraction of calculated var- 
iance contributions from measured zone var- 
iances is inherently difficult. It is also possible 
that heterogeneity of the silica surface and there- 
fore of its zeta potential is more important than 
is the observed (average) rate of electroosmotic 
flow itself. Though it is clear that neither ideal 
electroosmotic flow nor its modulation causes 
much zone broadening, electroosmotic flow het- 
erogeneity may be inevitable whenever electro- 
osmotic flow exists at all, and this may be the 
reason electroosmotic flow is often observed to 
lower the plate count to a fraction of that 
expected. 

NUMERICAL SIMULATION AND THERMAL 

CHANGES 

Methotis 
For cases where the temperature coefficient of 

electrolyte conductivity is nonzero, the radial 

temperature profile in a capillary heated by 
power dissipation in the lumen is solvable to any 
desired degree of accuracy only by numerical 
simulation [17]. As in the electroosmotic prob- 
lem in the previous section, we divide the space 
within the capillary’s outer wall into concentric 
annuli each of thickness Ar, the radial integra- 
tion resolution, chosen to be OS-1.0% of the 
capillary outside diameter. The model could be 
adapted to rectangular capillaries [18-201 or 
etched channels [21-221 with some loss of sim- 
plicity. For thermal simulations the boundary 
conditions in the space dimension consist of 
initial temperature (T) at all annuli i in the 
capillary, or 7’(t = 0; i), and the boundary condi- 
tions in the time dimension consist of the history 
of the temperature of the air at the polyimide-air 
interface, or Z’(t; r = A& + l), where Npi is the 
total number of annul1 representing the space 
within the capillary lumen, silica, and polyimide 
coating. 

We made some simplifying assumptions in the 
thermal simulations. First, we set to zero the 
temperature coefficients of thermal conduc- 
tivities A th, specific heats Cp, and densities D for 
electrolyte, silica, and polynnide coating and we 
assumed that there is little double layer reorgani- 
zation after application of the axial potential, 
though there may be experimental evidence in 
favor of some very slow such processes [23]. We 
assumed that the thermal transfer coefficient to 
air was temperature-independent, though the 
temperature of the outer capillary wall is very 
difficult to measure, as noted in other work [6]. 
We assumed that the temperature of the capil- 
lary’s surroundings are radially symmetric [24] 
and held constant at a known temperature; real 
instruments will satisfy this assumption to vary- 
ing extents [WI. We ignore radiative heat losses 
[26] and surface conductivity at the double layer 
[lo], each of which is expected to be very small. 
Finally, electrolyte conductivity temperature de- 
pendence in a given simulation was assumed to 
be either linear 

MT) = &(~Ll)(l +G - To)) 

or exponential 

(5) 

A,,(T) = Ath(To)e’(r-ro) (6) 
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in form, where To is the temperature of the 
capillary’s surroundings, and j is the temperature 
coefficient of electrical conductivity at T, 

1 j& 
‘=nth(TO)’ dT (TO) (7) 

The value of j is usually about 0.02 [27]. We used 
exponential temperature dependence except in 
simulations intended to model previously pub- 
lished work which employed linear or zero 
temperature dependence. When comparing our 
results to those of other work we adopted all 
capillary dimensions and physical properties used 
in that work. 

The enthalpy rate of change &I,,i generated 
by electrical resistance per unit length within 
each annulus i is 

Ei = (2i + l)n(Ar)2E2A,, for i s N,,, and 
IR,r 

{ 
0 for i > Naq 

(8) 

where E is the axial potential gradient (electrical 
field), AIR is the electrolyte’s electrical conduc- 
tivity, and Nag is the number of annuli represent- 
ing the lumen space. The outward heat flux Fi 
per unit length across each boundary i (which lies 
on the outside surface of annulus i) is 

F, = 21ri[Ti - Ti+,]& for i < Npi, and 
I 

i 2?rRpih for i = Npi (9) 

where Ti and Ti+, are the temperatures in annuli 
i and i + 1, At,, is the mean thermal conductivity 
of the materials in annuli i and i + 1, h is the 
extrinsic heat transfer coefficient from the out- 
side to the capillary’s polyimide coating to the 
surrounding medium, and R,.,i is the capillary 
outside radius. Thus the total enthalpy rate of 
change I$ per unit length for annulus i is 

hi = 
1 

-AFH,i ’ ‘1R.i for i = 1 , 

MH,i_l - AFH,i + fir,,, for 2 s i d Npi 

(10) 

and the rate of temperature change Ti in annulus 
i is 

fi = 
fii 

fl(2i - l)(Ar)‘D& 
(11) 

Given an integration cycle time increment At 
(see below), the temperature change ATi re- 
sulting from one integration cycle for each an- 
nulus i is 

AT,= TiAt (12) 

For thermal simulations, the integration time 
increment At,,, must be no greater than the 
lesser of two upper limits. The fhst prevents 
integration oscillation in the same manner as 
does eqn. 3 described above and is given by 

over 14 i d Npi 

(13) 

where CP,i is the heat capacity and At,,i is the 
thermal conductivity within a given annulus i. 
Under the simplifying assumptions above, 
At,,,(l) is time-independent and need be com- 
puted only once before integration begins. The 
second limit prevents resistive heating from 
causing the lumen temperature to increase in one 
integration cycle by more than an arbitrarily 
chosen limit AT,,,,,, so that 

ATmax 
At,,,(2) = min 7 

I I 
over ISiGN. p, (14) 

I 

We chose AT,,, to be less than about 0.1% of 
the total temperature rise at the capillary lumen 
center. Unfortunately, A&,,(2) depends on the 
temperature profile and so must be computed in 
every integration cycle. Except at extremely high 
applied power or extremely low arbitrary limit 

AT,,,, At,_( 1) was always smaller than 
At_(2) and thus defined the time increment we 
actually used, but to ensure computational 
stability we always computed both. 

Results and discussion 
We first ran our numerical simulations to long 

times to compare our steady state to results 
given in various other literature reports. Tem- 
perature profiles within the capillary lumen are 
very nearly parabolic, as noted by other workers 
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TABLE I 

COMPARISON OF PRESENT NUMERICAL SIMULA- 
TION (A) WITH ANALYTICAL APPROXIMATION OF 
REF. 25 (B) 

Zone Percent of total temperature 
range falling within given 
zone (%) 

A B 

Electrolyte 2.7 2.7 
Silica wall 2.8 2.8 
Polyimide coating 1.3 1.4 
Air-polyimide interface 93.2 93.1 

TABLE II 

COMPARISON OF PRESENT NUMERICAL SIMULA- 
TION (A) WITH ANALYTICAL APPROXIMATION OF 
REF. 27 (B) 

Lumen Lumen temperature Lumen wall 
radius range (K) temperature (K) 
(rm) 

A B A B 

25 0.33 0.53 (0.35?) 299.1 299.0 
50 1.37 1.39 301.5 301.2 
75 3.10 3.14 304.8 304.2 

100 5.52 5.58 308.8 307.7 
125 8.64 8.72 313.2 311.6 

[28], though exceptions may exist [29]. Using the 
physical parameters of Table II of ref. 26, we 
obtain steady state profiles (Table I) that agree 
closely with those obtained from the analytical 
approximation given in ref. 26. In Table II we 
show that our numerical results agree with other 
analytical approximations over a wide range of 
capillary lumen radii (we suspect that the lumen 
temperature range of 0.53 K given by ref. 28 for 
lumen radius 25 pm is a typographical error 
because it is inconsistent with other results in the 
same table). The steady-state temperature profile 
we obtain from numerical simulation also agrees 
closely with the results in ref. 30 using the 
analytical approximations of ref. 30 as given in 
the last column of our Table III. 

Numerical simulation under conditions given 
in ref. 25 predicts a lumen temperature increase 
of 50°C given thermal transfer coefficients typi- 
cal of liquid cooling and 1.7”C given perfect 
thermal dissipation at the outer surface, com- 
pared with the experimental temperature mea- 
surement [25] of 1.9”C, suggesting that if the 
measurements were accurate, thermal dissipation 
in those experiments was extremely efficient. 

However, it is in the study of non-steady-state 
thermal behavior that numerical simulation has 
the greatest advantages. One major advantage is 
that it provides direct access to simulated ther- 
mal profiles at any time during the equilibration 
process, as illustrated by Fig. 3. Another feature 
of the numerical approach is its ability to employ 
any boundary conditions or physical conditions 

TABLE III 

COMPARISON OF PRESENT NUMERICAL SIMULATION (A) WITH ANALYTICAL APPROXIMATION OF REF. 29 

(B) 

Position (pm Temperature increase (K) 
from center) 

0.034 s 0.34s 1.36s “Steady state” 

A B A B A B A B 

Center (0 pm) 4.31 4.23 19.1 18.9 28.7 28.4 29.2 28.9 
Aqueous-Si (75 pm) 2.52 2.49 16.3 16.0 25.2 24.8 25.2 25.3 
Si-polyimide (166 pm) 1.66 1.70 14.7 14.3 22.9 22.6 23.4 22.9 
Polyimide-air (180 pm) 1.40 1.49 13.2 13.0 20.6 20.5 20.9 20.9 
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26 

25.5 

Fig. 3. Electrolyte velocity temperature profiles at 2,4,6, 
. . , 43, . 50, 60, 70, go, . . . ) 240 and 250 ms after potential 
first applied. Simulated conditions as given in ref. 28: 
capillary radii: lumen 25 pm, silica 345 pm, polyimide 375 
pm; potential gradient 300 V/cm; resulting current 88.4 PA. 

whatsoever. Especially, one may set any initial 
temperature conditions one likes, and in fact 
may integrate backwards in time, though this 
technique is prone to oscillation because the 
profile-broadening effects of thermal conduction 
are reversed. One may include the effects of 
varying the surroundings’ temperature, for ex- 
ample when the thermostatting system has a lag 
time or is influenced by air conditioning. One 
may even include sudden, gradual, or cyclical 
changes in the applied potential, thermal or 
electrical conductivities, or other physical param- 
eters, though many combinations may not be 
physical consistent. 

The conditions of the separation considered in 
ref. 28 include extremely efficient thermal trans- 
fer from the capillary’s outer surface to its 
surroundings, and as expected most of the 
steady-state temperature drop is predicted to 
occur within the silica and the lumen with very 
little drop at the capillary outer surface (Fig. 3). 
Temperatures at the interfaces agree with those 
predicted by analytical means [28]. However, 
even in this nearly ideal case, the whole-capillary 
temperature rise takes about 100 times as long to 
develop as does the parabolic profile in the 
lumen, even with efficient thermal transfer at the 
outer surface. The lumen profile is fully de- 
veloped within a very few milliseconds. Such 
results confirm the need to distinguish between 
rates of thermal gradient development within the 
capillary’s inside and outside diameters [26]. 

Assuming a smaher, more realistic thermal 
transfer rate h at, the outer wall, we find that 
temperature profiles given by the present nu- 
merical simulation method agree at several radial 
positions and at several time points after first 
application of axial potential (Table III) with 
results of analytical approximations previously 
published [30,31]. Again we find that the 
parabolic temperature profile shape and gradient 
magnitude in the lumen develop in the first few 
milliseconds (Fig. 4). However, in most other 
ways the development of thermal profiles de- 
pends greatly on thermal transfer efficiency at 
the capillary outer wall -at lower thermal trans- 
fer efficiency the temperature rise across the 
column is much larger in proportion to the 
power dissipation, a much greater fraction of the 
temperature gradient across the capillary occurs 
at the outer surface, and the temperature rise 
throughout the capillary, including inside the 
lumen, take longer to complete. 

Once thermal steady state is achieved, setting 
the applied potential to zero reverses the proces- 
ses (Fig. 5). First, the parabolic temperature 
profile across the lumen flattens in a very few 
milliseconds, and the whole capillary cools more 
slowly and in a nearly exponential fashion. 

In the case of very inefficient thermal transfer 
from the outer surface of a capillary in contact 
only with still air, almost all of the radial tem- 

27 

26 

Fig. 4. Electrolyte temperature profiles (beginning with 
lowermost curve) at 2, 4, 6,. . . , 38, 40 (bold curve), 50, 
60,..., 180, 200 (bold curve), 250, 300,. . . , and 1000 ms 
after potential applied beginning at power-off steady state. 
Simulated conditions after ref. 30: capillary radii: 2.5 pm, 
silica 160 pm, and polyimide 165 pm; potential gradient 300 
V/cm; resulting current 100 PA. 
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26- 

Fig. 5. Electrolyte temperature protiles (begirming with 
uppermost curve) at 0, 2, 4, 6, . . . , 18, 20 @Id curve), 30, 
40,. . . ,90,100 (bold curve), 200,300,. . . , and 700 ps after 
potential set to zero after thermal steady state established. 
Conditions as in Fig. 4 except that potential gradient and 
current refer to preexisting steady state. 

perature drop occurs at the outer surface (Fig. 
6), that is, the temperature profile across the 
entire capillary is relatively very flat [9,26,27]. 
The inefficient heat dissipation requires that the 
applied potential be kept very small so that the 
temperatures in the lumen are kept low enough 
to prevent “thermal runaway” caused by positive 
feedback between temperature rise and elec- 
trolyte conductivity increases [24,26] large ther- 
mally induced pH changes [32], chemical 
changes like protein denaturation [27,33] or 
reduction [33], and other problems. The low 
power dissipation causes very little parabolic, 

020006000 loo 120 140 1.50 loo 
Distmee fmm mpillary eontar (urn) 

Fig. 6. Electrolyte temperature protiles (begimting with 
lowermost curve) at 200, 400, 600,. . . , 3800, 4000 (bold 
curve), XQO, 6000,. . . , and 20000 ms after potential ap- 
plied. Simulated conditions after ref. 30: capillary radii: 25 
pm, silica 160 Nrn, and polyimide 165 pm; potential gradient 
75 V/cm; resulting current 25 PA. 

zone-broadening radial thermal gradient in the 
lumen, but it also means that ion velocities will 
be so slow that the electrophoretic analysis will 
be slow. The capillary’s approach to thermal 
steady state requires several seconds in this case. 
The use of capillaries with extremely small inside 
diameters [14,X5] helps in two ways: by auppres- 
sing thermal broadening by decreasing the 
parabolic 1341, zone-broadening thermal gra- 
dients inside the lumen, and simply by decreas- 
ing the amount of power that the outer capillary 
surface is required to dissipate. However, note 
that at constant electrolyte composition, smaller 
inside diameters can cause the electric field rise 
time in the capillary to lengthen dramatically 
[13].) Further, there is experimental evidence 
[35] that the extent of convection and therefore 
the effective thermal transfer rate in still air 
depend on the outer surface temperature in 
unpredictable ways [36]. Fortunately, in elec- 
trokinetic sample injection the injection end of 
the capillary is immersed in the sample solution, 
so that the degree of temperature changes and 
the unpredictability of thermal transfer rates at 
the injection end of the capillary will not be as 
important as they might at first appear, though 
electroosmotic flow changes caused by slow 
capillary heating during injection may impair 
quantitative precision. 

Thus we confirm by independent means that 
efficient thermal transfer at the capillary outer 
walls are required for analyses that require both 
high separation efficiency and short analysis 
times. Air-cooled silica capillaries are known to 
limit the power dissipation to about 1 W/m 
[37,38] for efficient separations. Our results are 
consistent with others’ findings that efficient 
capillary cooling over the length of the capillary 
including near the detector [24] suppresses ther- 
mal zone broadening [9] and that under very 
efficient capillary cooling the thermal zone 
broadening is smaller than other sources of 
broadening [2,9,28,30,39] and especially that it 
contributes less broadening than does the length 
of the injection zone itself [l-3] in the efficient 
cooling case. Such efficient thermal transfer also 
speeds thermal equilibration of the whole capil- 
lary (though not of radial thermal gradients in 
the lumen) so that it is probably especially 
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important for efficient, quantitative CE separa- 
tions in short capillaries with large inside diame- 
ters and relatively high electrolyte conductivities. 

TIMESCALES OF TRANSIENT EVENTS IN 

CAPILLARY ELECTROPHORESIS 

We can now compare the timescales of several 
transient processes in CE (see Fig. 7). The 
fastest process is certainly the propagation of 
axial potential gradients down the length of the 
capillary lumen. For a capillary of length I filled 
with electrolyte of refractive index n, this charac- 
teristic propagation time is fchar = In/c, where c is 
the speed of light in a vacuum. For a 1 m column 
filled with aqueous electrolyte tchar is on the 
order of a few nanoseconds, depending on the 
refractive index of the electrolyte at the effective 
frequency at which the axial potential is applied. 
Thus even with the fastest power supplies one 
need not be concerned with electric field phase 
changes in a CE capillary. Though ion migration 
under an abrupt potential gradient change may 
indeed occur on a picosecond timescale [40], one 
can do very little to decrease the potential 
propagation time, so the former timescale must 
defer to the latter. 

Electroosmotic flow radial propagation occurs 
on the order of hundreds of microseconds as 
demonstrated above. This relaxation time can be 
accelerated greatly by increasing the electrolyte 
solution viscosity, but the most apparent effect 
will be the suppression of electroosmotic flow 
altogether. 

Thermal changes following application of 
potential to a CE capillary fall into two 
categories: the first, which occurs inside the 
capillary lumen and causes some zone disper- 
sion, and the second one a more general tem- 
perature rise over most of the capillary. The 
relaxation time of the thermal gradient in the 
capillary lumen is much faster than that of the 
general temperature rise largely because the 
distance over which heat must be conducted is 
much shorter in the first case than in the second; 
the resistance to heat flow presented by the 
capillary outer surface also serves to slow the 
general temperature rise, but not the parabolic 
profile formation in the lumen. 

The relaxation time of the thermal gradient in 
the lumen depends mostly on the capillary’s 
inside diameter and not on applied potential [2], 
while the relaxation time of the general tempera- 
ture rise depends greatly on the efficiency of heat 
transfer at the outer surface of the capillary, and 
to a lesser extent on the capillary outside diam- 
eter. Inefficient heat removal from the capillary’s 
outer surface may cause serious quantitation 
problems in electrokinetic injection by making 
non-linear the relation of analyte amount in- 
jected with the product of injection voltage and 
duration of injection. Convective cooling in 
unstirred air worsens this problem still more 
because the surface thermal transfer coefficient h 
probably depends in complex ways on the capil- 
lary surface temperature [36]. 

The electric field rise time in the capillary 
lumen is probably the most readily controlled of 
the transient processes considered in this work 
[3,40]. Though it is probably in the hundreds of 
milliseconds in most instruments, with care this 
rise time can be shortened to the milhsecond 
range [13]. This electric field rise time in the 
capillary makes irrelevant all clearly shorter rise 
times. 

Analyte diffusion across the lumen is the only 
process whose timescale depends directly on 
analyte properties, specifically on the analyte 
diffusion coefficient 0,. This process’s timescale 
is the most variable of those considered in this 
work. The diffusion coefficient is directly calcu- 
lable from the measured signed mobility m, and 
charge 2, of analyte x as 

1s A--J- 

Fig. 7. Summary of timescales of CE transient processes, 
given here for capillary of 50 pm inside diameter, 360 pm 
outside diameter. 
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D, = RTmJFZ, (15) 

where R is the ideal gas constant, T is the local 
temperature, F is the Faraday constant, and 2, 
is the signed charge on analyte n. Note that eqn. 
15 neatly accounts for the temperature depen- 
dence of the ratio DJm, previously noted in 
experimental results (21. 

We note here that the diffusion coefficient and 
mobility are directly linked by fundamental 
statistical mechanics and not through viscosity. 
Attributions to the contrary notwithstanding [2], 
we have never doubted the validity of eqn. 15. 
Viscosity cannot be derived from either analyte 
diffusion coefficients or mobilities, or vice versa 
[l], except under assumptions which are tenuous 
in homogeneous solution and patently invalid in 
the presence of gels and viscosity-enhancing 
polymers. One should not rely too much on any 
connection between ion mobility and electrolyte 
viscosity as is often done [2,41] but should use 
the Stokes-Einstein equation (15 above) instead 
when at all possible. 

MINIh%iZING THERMAL DISPERSION THROUGH 

POTENTIAL MODULATION 

Methods 
Thermal simulations demonstrate that the 

parabolic thermal profile in the capillary lumen 
rises and falls rapidly when the driving potential 
is applied or withdrawn, respectively, and the 
initial temperature changes occur rapidly and 
slow considerably after only a few milliseconds 
(Figs. 3-6). This behaviour suggests that when 
driving potential is applied, the ions immediately 
reach a nearly constant velocity, but that the 
dispersion-generating temperature difference be- 
tween the center and the wall of the lumen 
requires a few milliseconds to reach its maxi- 
mum. In this section we explore whether it is 
possible to maximize the ion migration while 
minimizing zone dispersion by taking advantage 
of the two process’s different timescales. 
Because the disparities in the processes’ time- 
dependent behaviour exist for only a few milli- 
seconds, a much shorter time than any feasible 
CE separation requires, we are constrained to 
exploit it in some repetitive fashion. The applied 

potential is the only whole-column experimental 
condition we can think of manipulating in just a 
few seconds. These two constraints suggest that 
in order to suppress the effects of thermal 
broadening, we investigate the use of driving 
potential modulation. 

All repetitive modulation patterns contained 
only three parts, applied in this order: a period a 
of duration 1, during which a positive potential 
gradient of magnitude E, is applied, followed by 
a period b of duration 1, of negative potential 
gradient of magnitude Eb, followed in turn by a 
period c of duration of Z, of zero* applied po- 
tential (see Fig. 8). Rather than using the PO_ 
tential gradients, we found it convenient to work 
instead from capillary-center ballistic heating 
rates B, and B, 

(16) 

that one would obtain from instantaneously 
switching from zero potential gradient to Ea and 
Eb, respectively, where Aaq is the specific electri- 
cal conductivity within the electrolyte solution, 
D, is the electrolyte density, and Cp,.q is the 
electrolyte specific heat. Our assumption that the 
rate k of radial thermal gradient relaxation 
within the electrolyte is slow compared to diffu- 
sional and column-wide heating relaxation rates 
is supported by results of previous sections of 

a 03 

Eb I I 
b 

Fig. 8. Definition of potential modulation sequence used in 
this work. E_ and Eb are potential gradients during periods a 
and b, and E,, Eb and EC are the durations of periods a, b 
and c. 
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this work. Assuming that a single radial thermal 
gradient relaxation time exists implies that tem- 
perature vs. time curves represent exponential 
decays. We expect that the results of this 
feasibility study do not depend strongly on minor 
deviations from exponential relaxation curve 
shapes. Our assumption that the decay curves 
during periods a and b are exponential implies in 
turn that conductivity changes caused by the 
electrolyte temperature excursions are linear, 
that is, that eqn. 16 holds. This assumption is 
very probably valid over the few degree’s tem- 
perature ffuetuations expected within the lumen 
of real capillaries. Finally, we assume that rec- 
tangular-wave modulation patterns can in fact be 
delivered to the capillary, that is, that the power 
source can deliver high-frequency components. 
For a capill of inside diameter 50 pm, k is 
about 500 s- (see Fig. 5). The power source 
must deliver alternating current components of 
at least a few kilohertz to synthesize a reasonable 
approximation of a 500-Hz square wave. Sine- 
wave modulation at 390 Hz [23] and reasonably 
square-wave modulation at 500 Hz [13] of the 
CE driving potential have been reported previ- 
ously. 

The steady state (identical thermal profiles in 
sequential cycles) is achieved only after very 
many identical modulation cycles. The present 
model considers only the analytes’ behavior at 
steady state. Under the assumptions of the 
previous paragraph, steady-state capillary center 
temperatures T,,,, Tb,t and T,,, during periods a, 
b and c are given by 

T,,, = T.,_ - T,,, e-k(i-ra~o) 

T,,, = Tb,_ + (T,,, - T,,,J e-*(‘-‘b*o) (17) 

T C,f = Tbsm e-k(r-rc,o) 

where TO,_ and T,,, are the asymptotic capillary- 
center temperatures, relative to ambient tem- 
perature, at times long compared to the in- 
tralumen thermal relaxation time k-’ but short 
compared to the column-wide thermal relaxation 
time, and where t.,O, fb,o and &, are times at the 
beginning of periods a, b and c, respectively, 
within a given cycle. One can solve by substitu- 
tion for the capillary-center temperatures Ta,o, 

T,,,. and Tc,o at potential-switching times t.,O, tb,O 
and G,o to obtain 

T cr,o = T,,, + (T,,, - T,,J e-“# 

Tb.0 = 
T&l - eektb) + T,,, eVktb(l - eekta) 

1 _ e-Q, e-+% e-kt, (18) 

Tc,o = Tb,_ emkrc 

To judge the success of any given modulation 
sequence defined by B,,, Bb, kt,, ktb and kt, 
requires that one integrate over one steady-state 
modulation cycle the capillary-center displace- 
ment of analyte n with velocity temperature 
coefficient i, relative to its displacement at the 
capillary wall, assuming that electroosmotic flow 
is either absent, laminar, or relaxing radially 
much faster than radial thermal relaxation. ‘This 
dispersion-generating net displacement differ- 
ence Ad, is 

A4 

=A 4 { lot” (T - T,,o) dt + 4, c CT - Tb.0) df] 
=j,{B,[T,,&, - (Tc,o - Ta,.dWkta - lYk1 

- Bb[Tb,db - (Ta,o - Tb,mWk’b - WI) 
(19) 

Our strategy is thus to explore modulation 
sequences giving zero net axial displacement 
difference Ad=, selecting for further considera- 
tion those which yield significant net forward 
displacement. Because modulation sequences 
vary in duration, we found it most useful to 
compare the usefulness of modulation sequences 
with zero Ad, by comparing values of R,, the 
ratio of d,,,, the forward displacement one 
would achieve by applying a constant potential 
equal to the modulation sequence’s maximum 
potential, to dmod, the forward displacement 
under modulation. 

d 
Rd=f== 

(4 + tb + tJ * m4%19 PbI> 
mod ItalKzI - bL%II 

= k + tb + &) - max(Ba9 Bb) 

ItA - tt.Bbl (20) 
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This measure of comparison is conservative in 
that it disfavors modulation sequences relative to 
constant potentials because capillary-center tem- 
peratures under modulation will generally not 
rise as high as they would under a given se- 
quence’s maximum potential held constant. 

Results and discussion 
The minimum set of properly scaled and 

dimensionless parameters defining a modulation 
sequence is: BJB,, kt, and ktb. The absolute 
magnitudes of B,, and B, are unimportant if the 
maximum applied potentials are small enough 
that ion velocity temperature coefficients are 
constant. The dimensionless duration of the 
zero-potential (cooling) period, defined by kt,, is 
adjusted to set Adi to zero, so kt, is only a 
dependent parameter of the modulation cycle’s 
definition. For many combinations of BJB,, kt,, 
and kt, values there exists no positive kt, yield- 
ing zero Ad,. 

We find that under this model there do exist 
modulation sequences that completely suppress 
thermally generated CE zone dispersion (Table 
IV). The optimal sequence appears to have the 
parameters BJB, = 1.0, kt, = 1.5 and ktb = 1.0. 
This is probably a global optimum, as the range 
of parameters allowing for zero calculated ther- 
mal dispersion is very limited. 

These sequences work because most of the 

TABLE IV 

SOME MODULATION SEQUENCES GIVING ZERO 
CALCULATED THERMAL DISPERSION 

Adjustable parameters 

WB., k kt, 

1.00 1.1 1.0 
1.2 
1.3 
1.4 

1 1 

1.5 
1.6 
1.7 
1.8 

Results 

kt, 

0.22 
0.46 
0.72 
1.04 
1.48 
2.18 
5.9 

b 

R, 

23.2 
13.3 
10.1 
8.6 
8.0” 
8.0” 

12.3 
b 

p Very near apparent global optimum. 
b No kt, value gives zero calculated thermal dispersion. 

forward displacement during period a occurs 
when the radial thermal gradients are small, and 
most of the reverse displacement during period b 
occurs when the radial thermal gradients are 
fully developed. Thus, if the applied potential in 
the two periods are of equal magnitude, t, may 
be longer than tb, so that while the axial disper- 
sion in the two periods exactly cancel, there is 
net forward ion migration. 

Whether one can achieve such zone sharpen- 
ing in practice we cannot say due to the number 
of assumptions we were required to make. To 
remove the assumption that relaxation is ex- 
ponential in time and to explore more realistic, 
non-rectangular waveforms with fewer high-fre- 
quency components would require micrometer- 
resolution, two-dimensional (axial and radial), 
time-dependent integration in ion velocity and 
temperature, and perhaps in electroosmotic flow. 
Further, there has been reported experimental 
evidence of radial ion migration under modu- 
lated applied potentials [23,42] whose inclusion 
would complicate matters still further. Such 
complete integrations would be computationally 
demanding in the extreme. 

However, because the present model’s sim- 
plifying assumptions are probably close to reali- 
ty, we speculate that there may exist real modu- 
lation sequences which are accessible experimen- 
tally and which suppress the dispersive effects of 
radial thermal gradients. We note an interesting 
previous report of similar suppression results 
obtained by introducing a steady-state retrograde 
hydrodynamic flow [43]. 

Sequences such as the ones presented herein 
would be most valuable when applied to highly 
conductive electrolyte solutions or perhaps to 
capillaries with large inside diameters, provided 
the model’s timescale assumptions still apply. 
Preparative CE of large molecules (with small 
diffusion coefficients) might best make use of the 
proposed method. We have had to make a 
considerable number of assumptions in the inter- 
est of mathematical tractability. It is not clear 
whether the thermal states generated by optimal 
sequences will be near enough to steady state 
that exponential decay will be a useful approxi- 
mation [12]. Thus, nothing can take the place of 
careful experimental demonstration, including 
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error analysis, of this proposed antibroadening 
effect. 

21 

22 
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